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Abstract Engineering design is undergoing a paradigm shift from design for performance to design

for affordability, operability, and durability, seeking multi-objective optimization. To facilitate this

transformation, significantly extended design freedom and knowledge must be available in the early

design stages. This paper presents a high-fidelity framework for design and optimization of the liq-

uid swirl injectors that are widely used in aerospace propulsion and power-generation systems. The

framework assembles a set of techniques, including Design Of Experiment (DOE), high-fidelity

Large Eddy Simulations (LES), machine learning, Proper Orthogonal Decomposition (POD)-

based Kriging surrogate modeling (emulation), inverse problem optimization, and uncertainty

quantification. LES-based simulations can reveal detailed spatiotemporal evolution of flow struc-

tures and flame dynamics in a high-fidelity manner, and identify important injector design param-

eters according to their effects on propellant mixing, flame stabilization, and thermal protection.

For a given a space of design parameters, DOE determines the number of design points to perform

LES-based simulations. POD-based emulations, trained by the LES database, can effectively

explore the design space and deduce an optimal group of design parameters in a turn-around time

that is reduced by three orders of magnitude. The accuracy of the emulated results is validated, and

the uncertainty of prediction is quantified. The proposed design methodology is expected to pro-

foundly extend the knowledge base and reduce the cost for initial design stages.
� 2018 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Engineering design is undergoing a paradigm shift from design
for performance to design for affordability, operability, and
durability, seeking multi-objective optimization. There are typ-
ically four stages in a life-cycle engineering design: require-

ments definition, conceptual design, preliminary design, and
detailed design as shown in Fig. 1.1 In the first stage, the
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Fig. 1 Life-cycle design stages.1
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requirements posed by the customer are defined. Conceptual
design then starts based on experience and prior knowledge.

Preliminary design involves transforming the concept so that
the product can function properly and meet the customer/mar-
ket demands. Further testing and fine-tuning is performed in

the detailed-design stage. In today’s design methodologies, as
a program reaches the preliminary design phase, the amount
of design freedom rapidly decreases, while the cost commit-
ment and need for design knowledge drastically increase. For

the F-1 rocket engine development in the Apollo lunar-
landing project, for example,2 more than 1300 component
and engine tests were performed during the detailed-design

stage to mitigate combustion instabilities, accumulating a
tremendous design cost. To remedy this situation, an innova-
tive design process is needed to bring more knowledge to the

earlier design phase, keeping design freedom open longer and
optimizing cost commitment, as depicted in Fig. 1.

To facilitate the aforementioned design process, a more in-

depth analysis at the conceptual and preliminary stages is
required. In addition, the design cycle time should be short-
ened along with the reduced cost. Multi-disciplinary design
analysis and optimization needs to be incorporated in order

to achieve those goals. A key enabler is high-fidelity physics-
based modeling and simulations, which plays a vital role for
efficient design surveys. These models streamline trade-off

analysis and concept selection during the early design. Formu-
lating these models usually requires lower-fidelity, less-
expensive models to complement the primary, high-fidelity cal-

culations to improve iteration turnaround times. This strategy
is called multi-fidelity design optimization.3 The use of sec-
ondary, correlated quantities to enhance model performance
is not a new concept, as there is an established approach of

model building using objectives resulting from computational
simulations of varying fidelities and costs.4 The methodology
has been improved by combining flexible location and scale

adjustments of the abundant, low-fidelity data to be closer to
the high-fidelity data, using Bayesian hierarchical Gaussian
process models.5

Much of early literature revolved around treating different
mesh levels as an indicator of fidelity,6 which evolved into
treating the hierarchy of flow solvers as different fidelities. Glo-

bal optimization (based on scalar metrics such as aerodynamic
coefficients and wall conditions) using neural-network and
polynomial-based response surface methodologies has been
demonstrated for various applications, ranging from wing
aerodynamics, turbulent diffuser flows, gas-gas injectors, and
supersonic turbines.7 Kriging, a Gaussian Process (GP) model-
ing, has been shown to perform better global approximations

than response surface models, as it utilizes a ‘‘global” model
and Gaussian correlation functions.8 This model drastically
reduces the computational time required for design space

exploration and evaluating the objective function in the opti-
mization process.9 Kriging can also be employed to construct
effective surrogate models to integrate information from both

high-fidelity and low-fidelity models, while interpolation
uncertainty of the model is quantified.10 Techniques emphasiz-
ing reduction of high-dimensional design spaces, such as cor-
rected space mapping for variable-parametrization design

spaces11 and imposing Partial Differential Equations (PDE)-
constraints,12 can further reduce computational costs.

Since the introduction of modeling deterministic outputs as

a realization of a stochastic process and formulating a statisti-
cal basis for designing experiments,13 statistical techniques
have been used to build approximations (surrogate models)

of expensive computer analysis codes to facilitate multidisci-
plinary, multi-objective optimization and concept explo-
ration.14 The conceptual and preliminary design of aerospace

systems require tools that are capable of providing adequate
fidelity and efficient evaluation for design space exploration.
Aerodynamic performance has been the focal point for
multi-fidelity design procedures, in which a conceptual low-

fidelity optimization tool is combined with a hierarchy of flow
solvers of increasing fidelity.15,16 Relying on interpolation
error of radial basis functions between a high-fidelity and a

low-fidelity function, maximum likelihood estimator models
can be generated based on Kriging variance estimates, and
have shown convergence and robustness with respect to low-

fidelity information in a trusted region.17 There are typically
three applications for multi-fidelity models: uncertainty propa-
gation, statistical inference, and optimization. The construc-

tion of surrogate models can typically be split between
simplified models, projection-based reduced models, and
data-fit models. Simplified models are derived from high-
fidelity models, through simplifying physics assumptions or

linearization. Projection-based models are computed by pro-
jecting the governing equations of a high-fidelity model onto
a low-dimensional space. Data-fit models are formulated

directly from the data, relying on black-box high-fidelity mod-
els and response surface approximations through regression
analysis.

The data required for formulating a low-fidelity model can
be severely limited by the time and computation constraints of
high-fidelity simulations. Fig. 2 shows the Pareto frontier for
computational modeling and simulation capability.18 In

multi-objective optimization, when different objectives are
conflicting, an optimal solution can be obtained accounting
for the trade-offs. The set of all Pareto optimal solutions is

called Pareto frontier. The figure illustrates the trade-off
between the level of model fidelity and the extent to which
the designer explores the design space. In some cases, this

problem can be alleviated by performing a low-fidelity model
and translating the result to a higher-fidelity model. In other
instances, low-fidelity data, employing corrections for

improved accuracy, can be combined with high-fidelity data
to reduce the overall number of expensive runs. The current
work is in the middle circle, having a broad scope of design
and retaining the high-fidelity information required to analyze



Fig. 2 Pareto frontier of computational modeling and simula-

tion capability.18
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system dynamics. With continuing progress in modeling capa-

bilities, simulation-based optimization has proven to be a use-
ful tool in the design process, but complex design problems can
still be a daunting task.

The present study proposes a novel design methodology
that combines high-fidelity simulation and Proper Orthogonal
Decomposition (POD)-based emulation to reduce the cost and
time of the initial design stages. Unlike conventional surrogate

models, the emulation framework maintains the high-fidelity
information, capturing detailed spatiotemporal evolution of
flow structures and dynamics. High-fidelity simulations are

first used to explore the flow physics using Large Eddy Simu-
lations (LES). The number of simulations is determined by
Design Of Experiment (DOE). Results are then systematically

analyzed using sensitivity analysis and machine learning to
identify the key design parameters and classify the design
points according to the output responses. Next, surrogate
modeling (emulation) is performed through POD analysis

and GP regression (Kriging), which is benchmarked against
high-fidelity simulations. The overall framework can provide
detailed physics, identify key design parameters, reconstruct

a spatiotemporally evolving flowfield, and predict output per-
formance at a new design point in an efficient manner. Finally,
a case study of supercritical-fluid swirl injectors is performed

to demonstrate the effectiveness of the approach.

2. Methodology

Fig. 3 shows the proposed design methodology. It begins, as in
traditional methods, with a set of input parameters including
various geometrical variations and operating limits. Then,

DOE is used to obtain the optimal design parameter sets for
training the surrogate model. For a given number of design
variables, a practical number of simulation points are planned.
During collection of training data, high-fidelity simulations are

analyzed and physically interpreted. Important physical mech-
anisms are identified, and responses are extracted via post-
processing. The careful analysis of high-fidelity simulations

can quantify the relationship between key flow physics and
design parameters. This knowledge enables the use of
sensitivity analysis for parameter reduction and supervised
learning for data classification, facilitating the model training
process. The surrogate model relies on the physical knowledge

obtained from the simulations to properly retain high-fidelity
information.

2.1. Design of experiment

In the early design stages of a complex system, the design space
needs to be surveyed to identify the optimal range for design

parameters and feasible starting points. An integrated design
process combining design principles such as Taguchi methods
and response surface methodology19 into one mathematical

framework can be used to address this multi-objective design
concept problem. The critical component of the optimization
problem is to properly identify the response function.

High-fidelity simulations take excessive run times, so opti-

mization based on an inexpensive surrogate model is required.
A surrogate model provides effective means to speed up com-
putations, protect proprietary codes, and overcome organiza-

tional barriers. For problems involving spatiotemporal
evolution, a surrogate model needs to be formulated such that
the essential flow physics are captured.20 Surrogate-based opti-

mization can provide quantitative assessment of design trade-
offs and facilitate global sensitivity evaluations of design
parameters. The surrogates constructed using data drawn from
high-fidelity simulations provide efficient approximations of

the objectives at new design points, rendering trade-off studies
feasible. A sufficient number of different designs must be
examined to build the surrogate model; the process of selecting

different designs is DOE, a statistical methodology to deter-
mine the ideal training design points for surrogate modeling
for a given design space. Two different DOE methods, Maxi-

mum Projection (MaxPro)21 and Sliced Latin Hypercube
Design (SLHD),22 are considered in the present study. The for-
mer has good space-filling properties and GP modeling predic-

tions, but it does not provide a sequential design capability, as
the SLHD does. The design points for the SLHD are parti-
tioned into slices of smaller Latin hypercube designs, rendering
a design that is flexible as to size and parameters. The space-

filling performance of the design points in each slice is optimal.

2.2. LES-based high-fidelity simulations

2.2.1. Governing equations

Propulsion and power-generation systems often operate at

pressures higher than the thermodynamic critical points of
the propellants involved, commonly known as supercritical
conditions.23 Advances in fluid-flow modeling and simulation

techniques over the past few decades have enabled high-
fidelity representation and improved understanding of intricate
flow physics and combustion dynamics in the supercritical
regime. Here ‘‘high-fidelity” refers to simulations that can cap-

ture turbulent flow dynamics over a wide range of length and
time scales. In the present work, the LES technique is adopted
to perform high-fidelity simulations at all design points. The

formulation is based on Favre-filtered conservation equa-
tions24,25 written as follows:
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Fig. 3 High-fidelity design methodology with LES-based simulation and POD-based emulation (N and M are number of design points).
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Here overbars and tildes represent Reynolds and Favre

averaging, respectively. q, uj, p, et, u, sij and qj denote den-

sity, velocity, pressure, total specific energy, scalar, viscous
stress tensor, and heat flux, respectively. t is time and x spa-
tial coordinate. i and j are dummy indices. dij is the Dirac

delta function and D is the mass diffusivity. The unclosed

subgrid-scale (sgs) terms, including shear stresses ðssgsij Þ,
energy flux ðHsgs

j Þ, and scalar mixing flux ðUsgs
j Þ, are modeled

using a compressible-flow version of the Smagorinsky static

model. For non-reacting flows, the scalar ðuÞ represents spe-

cies mass fraction and the source term ð�_xuÞ is zero. For

reacting flows, the selection of the scalar depends on the
specific combustion model employed. Direct integration of
finite-rate chemistry considers species mass fractions as a

set of scalars. In a steady laminar flamelet model, the mixture
fraction is selected, and the source term disappears. The fla-
melet/progress variable model uses both mixture fraction and
a progress variable.
2.2.2. Thermodynamics and transport properties

Real-fluid properties need to be accurately calculated. Accord-

ing to fundamental thermodynamics theories, thermodynamic
properties can be expressed as the summation of an ideal-gas

counterpart and a departure function accounting for dense
fluid corrections.23 Transport properties of the mixture, includ-
ing thermal conductivity and dynamic viscosity, are evaluated

using extended corresponding state principles. Detailed valida-
tion and implementation are outlined in Refs.23,26.

An Equation Of State (EOS) is required to obtain fluid vol-

umetric properties (p-q-T) and to close the theoretical formu-
lation, Eqs. (1)–(4). Several cubic EOSs are available for real
fluids.27 In the current study, a modified Soave-Redlich-
Kwong (SRK) EOS28 is employed for its validity over a broad

range of fluid states and easy implementation. The filtered
SRK EOS can be expressed in the form of compressibility fac-
tor (Z) and written as:

p
� ¼ q

�
R0�

T
�
Z
�
þpsgs ð5Þ

where R0 and T denote the specific gas constant and temper-

ature of a mixture, respectively. The unclosed sgs term is
highly non-linear, with subgrid interactions of triple compo-

nents, psgs ¼ q
� eZR0T
� �

� q
�
R
� 0 T

�
Z
�h isgs

. This term appears to

be negligible for ideal gases ðZ ¼ 1Þ, but may become signif-

icant and comparable to the filtered term at real-fluid (high-
pressure) conditions.25 A well-developed model for psgs

remains an open topic of research, and is thus neglected in
the present study.
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2.2.3. Turbulence/chemistry interaction

For the physical problems of concern, fuel and oxidizer are

injected separately, and then mix and react in a diffusion-
controlled mode. The chemical time scale is assumed to be
short compared to its diffusion counterpart, so that combus-

tion takes place within asymptotically thin layers embedded
in the turbulent flow. These layers are referred to as flamelets
with well-defined inner structures. As a consequence, the

chemistry is decoupled from the local flow dynamics and eval-
uated by means of solutions of counterflow diffusion flames,
which are filtered using appropriate scalars with presumed
probability density functions and tabulated into a flamelet

library. The selected scalars depend on the specific flamelet
model implemented. Both steady laminar flamelet and flame-
let/progress variable models are employed. Detailed informa-

tion can be found in Huo and Yang.24

2.2.4. Numerical method

The numerical framework is based on a preconditioning

scheme and a unified treatment of general-fluid thermodynam-
ics.26 It employs a density-based, finite-volume methodology,
along with a dual-time-step integration technique.29 Temporal

discretization is achieved using a second-order backward
difference, with the inner-loop pseudo-time integration by a
four-step Runge-Kutta scheme. Spatial discretization is

obtained with a fourth-order central difference scheme in
generalized coordinates. Fourth-order matrix dissipation is
employed to ensure numerical stability and minimum contam-

ination of the solution. Finally, a multi-block domain decom-
position technique associated with the message passing
interface technique is applied to optimize computation speed.

2.3. Emulation

The emulation employs a GP regression technique called Krig-
ing, combined with data-driven basis functions. These eigen-

modes represent the coherent structures underlying the flow
dynamics. The framework incorporates sensitivity analysis of
design parameters using Sobol’ indices,30 physics-guided data

partitioning, and flow evolution prediction. The novelty of
the approach is to build the emulator using POD, allowing
for data-reduction and extraction of coherent structures.

Typically, POD is only suitable for extracting coherent

structures at a single geometry, whereas for emulation, a versa-
tile method is needed to extract common structures over vary-
ing geometries. To this end, a common grid system is

established for the projection of all simulation data. The Com-
mon POD (CPOD) is thus formulated to capture the flow
characteristics over the design space. The Kriging model is

essentially an interpolator for the time-varying coefficients of
the obtained POD basis functions. This methodology allows
for accurate flow predictions at any new design setting. As

mentioned previously, DOE determines the number of design
points and associated parameter sets for which high-fidelity
simulations are conducted. The accumulated database is used
to train the emulator. Note that different design points may

show either similar or significantly different flow structures.
To better integrate the flow physics for the CPOD-based emu-
lation, two techniques are implemented beforehand: (A) a sen-

sitivity analysis for identifying important design parameters,
and (B) a decision-tree learning process determining the
dichotomy of designs with distinct features.

2.3.1. Kriging surrogate model

The predictive model (emulator) combines machine-learning
techniques and statistical modeling with a physics-driven data
reduction method. A complete description of the model devel-

opment from the statistical perspective is given in previous
studies.20,31 The model relies on the POD basis functions, also
known as mode shapes, which are the spatial distributions rep-

resenting the coherent structures of the flowfield. It should be
noted that this calculation is not done for the entire dataset, as
each physical parameter is processed separately. In order to

treat the data together, scaling and dimensions need to be care-
fully formulated to obtain interpretable mode shapes.

To accommodate different geometries in the design space, a

common set of mode shapes is required for building the emu-
lator. Physically, this means that common coherent structures
must be extracted over the design space, which includes broad
geometric variations. One option is to select a computational

domain that stays the same despite design changes.32 As previ-
ously mentioned, an emulator can be formulated as long as a
set of common basis functions exist, leveraging the eigenfunc-

tions generated by the POD analysis. Algorithmically, the
CPOD expansion is obtained by first rescaling the various
cases to the same grid, then computing the POD expansion,

and finally rescaling the resulting modes back to the original
grid. The details for CPOD can be found in Ref.31.

Suppose n simulations are conducted at varying design

geometries c1; c2; . . . ; cn and let f x; t; cið Þ be the simulated flow-
field at design ci for a given time t and spatial coordinate x.
The kth CPOD mode is defined as

/kðxÞ ¼ argmax
w:kwk2¼1

Pn
i¼1

R R
Mi w xð Þ½ �f x; t; cið Þdx� �

2dt

s:t:
R
w xð Þ/lðxÞdx ¼ 0 8l < k

8><>: ð6Þ

Here, the map Mi : R
2 ! R2 is the transformation which lin-

early scales spatial features from the common geometry c to
the ith geometry ci. The sequence of POD coefficients is
defined as:

bk ci; tð Þ ¼
Z

Mi /kðxÞf gf x; t; cið Þdx ð7Þ

with the corresponding POD expansion using K modes given
by:

fðKÞ x; t; cið Þ ¼
XK
k¼1

bkðci; tÞMi /kðxÞf g ð8Þ

The transformation allows for the calculation of the
CPOD. The obtained modes can be used to pinpoint impor-
tant mechanisms of flow dynamics.

The calculation of the inner product is a computational
bottle-neck, requiring eigen-decomposition of a nS� nS
matrix, where n is the number of simulated cases and S the

number of snapshots. This usually requires Oðn3S3Þ computa-
tional work. An iterative method of eigen-decomposition
based on periodic restarts of Arnoldi decompositions is used

to quickly calculate the first few eigenvectors with the largest
eigenvalues.
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A Kriging model is applied to the CPOD time-varying coef-
ficients of the CPOD modes, bkðci; tÞ. For the fine temporal
resolution typical of LES (�10�6 s), there is no practical need

to estimate temporal correlations, especially because predic-
tions will not be made between time-steps. The time-
independent emulator uses Kriging models at each instant of

time. With the mean and variance computable in closed form,
uncertainty quantification and confidence intervals can be cal-
culated easily. Such an emulator minimizes the Mean-Squared

Prediction Error (MSPE), a commonly-used criterion. In the
context of flowfield prediction, this Kriging estimator allows
us to obtain accurate flow predictions from the CPOD time-
varying coefficients. It can also be shown that this best MSPE

predictor is unbiased, matching the expected and true function
value.33

To close the formulation, the model parameters need to be

tuned using data. A technique called maximum likelihood esti-
mation, an estimation technique widely used in the statistical
literature,34 is employed and optimization is achieved by

means of the L-BFGS algorithm. 35 Once the model is trained,
the emulator is used with the CPOD expansion to predict the
flow evolution at a new design point, that is,

f̂ x; t; cnewð Þ ¼
XK
k¼1

b̂kðcnew; tÞMi /kðxÞf g ð9Þ

The computational cost of the proposed emulation is three
orders of magnitude smaller than that of LES.20

2.3.2. Sensitivity analysis

A sensitivity analysis using Sobol’ indices30 is performed to
determine which design parameters contribute most to changes
in the output responses of interest. The analysis allows for

parameter reduction. The idea is to decompose the variations
of certain output variables into the partial variations attributa-
ble to each input parameter and the effects of interactions

between parameters. Such a method is closely related to the
classical analysis-of-variance technique used in linear regres-
sion models.36

Sobol’ indices can be computed as follows. First, a pseudo-

random parameter sequence is generated using a low discrep-
ancy Sobol’ point set. Then, this sequence is used to estimate
the integrals, which provide the corresponding Sobol’

indices.20 The quantification of the response sensitivity for
each parameter serves two purposes: (A) it provides a prelim-
inary analysis of important effects in the system, which facili-

tates further physical investigations, and (B) it reduces the
number of parameters that must be considered in the emulator,
enabling efficient survey of design parameters within the design

space.

2.3.3. Decision tree

The flowfield may display significantly different structures at

different design points. For the case of swirl injectors in the
present study, there exists a jet-like/swirling flow dichotomy
determined by the liquid-film spreading angle in the design
space. For simulated design points, it is trivial to classify

whether such a parameter set results in a jet-like or swirling
flow, because the flowfield data is readily available. For design
settings that have not been simulated, a data-driven technique

is needed to make such a classification. With this technique, a
boundary between jet-like and swirling cases can be quantified
over the design space of interest, and this enhances physical
insight into the design space and can guide additional experi-
ments. Furthermore, the classification information can be used

to train separate surrogate models for the jet-like and swirling
domains. This partitioning of the dataset allows the model to
extract flow characteristics associated with jet-like or swirling

behavior separately, thereby improving its predictive accuracy.
A machine-learning tool ‘‘decision tree” is implemented for the
classification process.

Decision trees are one of the most popular predictive mod-
els in data mining and machine learning.37 A decision tree is a
support tool that models parameter settings and their possible
consequences. Such methods are a part of a larger class of

learning methods called supervised learning,38 which aims to
predict an objective function from labeled training data. A
classification tree specializes in predicting classification out-

comes, such as whether a parameter set has a jet-like or swir-
ling flow. The trained model can be summarized by a binary
tree, separating the design space into two subgroups. Each

node of this tree represents a parameter decision, and each leaf
of the tree indicates the class of outcomes, following the chain
of decisions made from the tree root.

3. Case study: Swirl injectors

In this section, a case study of liquid swirl injectors is

performed to illustrate the proposed design methodology
with the combined LES-based simulations and POD-based
emulations. The former are used to investigate the detailed
spatiotemporal flow structures and flame dynamics in a

high-fidelity manner and to identify important injector design
parameters according to their effects on propellant mixing,
flame stabilization, and thermal protection. The latter further

explore the design space and pinpoint the optimal group
of design parameters, in subtantially reduced turn-around
times.

3.1. LES-based high-fidelity simulations

The LES-based framework presented in Section 2.2 is applied

to simulate supercritical mixing and combustion in swirl injec-
tors. Flow swirl has been widely used in modern propulsion
and power-generation systems.39,40 The swirling motion
induces outward spreading of the liquid film and produces a

central recirculation zone downstream of the injector, thereby
improving mixing efficiency and flame stabilization. As
described here, high-fidelity simulations of three different con-

figurations, including simplex swirl injector,41 bi-swirl injec-
tor,42,43 and Gas-Center Liquid-Swirl Coaxial injector
(GCLSC),44 were performed to facilitate understanding of

physicochemical processes and identify important design
parameters for injector performance.

3.1.1. Simplex swirl injector

The simplex swirl injector of concern is the inner swirler of a
bi-swirl injector used in RD-0110 rocket engine.45 Fig. 4 shows
a longitudinal view of a bi-swirl injector element.43 Liquid

OXygen (LOX) is tangentially injected into the inner swirler,
while kerosene is tangentially introduced into the coaxial outer
annulus. They mix and react in the downstream region of the
injector.



Fig. 4 Schematic of single injector element.43
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The geometric parameters and operating conditions are
adapted from the RD-0110 engine.45 r and Rv denote radial
coordinate and vortex chamber radius, respectively. A LOX

post with a thickness of h (0.8 mm) is recessed to a distance
of l (1.5 mm), and the width of the coaxial annulus is Dr
(0.5 mm). The injector measures length L of 22.7 mm and noz-

zle diameter R of 2.7 mm. As will be shown in Section 3.1.2,
these parameters are crucial for efficient mixing and combus-
tion. The operating pressure is 100 bar (1 bar = 105 Pa), far

exceeding the thermodynamic critical points of oxygen
(50.5 bar) and kerosene (21.7 bar). In this section, attention
is focused on the dynamics of the LOX swirling flow in the
inner swirler without influence from the outer annulus.

Fig. 5 shows a snapshot of the density field in both the axial
and azimuthal directions. LOX is injected into the vortex
chamber at 120 K. Many salient flow characteristics are

observed.41 The swirl-induced centrifugal force drives the
LOX film to flow along the injector surface. A center gaseous
core is formed because of conservation of mass and angular

momentum. The axial velocity of the LOX film increases sig-
nificantly through the converging section between the vortex
chamber and nozzle. This leads to a much thinner and more
uniform LOX film in the nozzle than in the vortex chamber.

The thin LOX film spreads upward and mixes efficiently with
the surroundings. The swirl strength of the liquid film
decreases as it convects downstream, resulting in an adverse

pressure gradient and a center recirculating flow.
In spite of the relatively simple geometry, there exist several

different types of flow instabilities in the flowfield. For exam-

ple, pressure disturbances downstream of the injector, which
could be triggered by the liquid-film shear-layer instability,
Fig. 5 Snapshots of density field in axial and azimuthal views.
travel upstream to the tangential inlet in the form of an acous-
tic wave. Such disturbance then causes the incoming mass flow
rate to fluctuate at the inlet, due to the variation of the pres-

sure drop across the inlet. The resultant mass-flow-rate fluctu-
ation propagates downstream in two distinct ways: one along
the axial direction and the other in the azimuthal direction.

The calculated injector dynamics show close agreement with
classical theories.46 Detailed discussion of the underlying phy-
sics is given in Ref.41.

3.1.2. Liquid-liquid bi-swirl injector

This section presents LES results on the flow and combustion
dynamics in an RD-0110 liquid-liquid bi-swirl injector, as

shown schematically in Fig. 4. Kerosene is injected into the
coaxial annulus at a temperature of 300 K. Special attention
is paid to the effects of recess region (l), post thickness (h),

and annulus width ðDrÞ on the mixing and combustion
characteristics.42

Fig. 6 shows snapshots of the density ðqÞ, vorticity ð xj jÞ,
and kerosene mass fraction ðykeroÞ fields. The development of

the liquid film in the inner swirler resembles the situation in
the simplex swirl injector shown in Fig. 5. Large vortical struc-
tures are observed in various regions, including the wall

boundary layers, the interfacial layer between the dense LOX
and gaseous oxygen, and the fluid mixing region. The mixing
of LOX and kerosene begins in the recess region. Given that

the momentum flux of LOX is roughly five times of that of ker-
osene, the LOX stream spreads upward, forms a conical liquid
sheet, and blocks the kerosene flow, which then adjusts its path

and occupies the upper part of the recess region. The LOX film
surface is highly wrinkled by shear-layer instability. Classical
liquid breakup does not occur at supercritical conditions,
where it is replaced by turbulent mixing and diffusion, through

which efficient mixing of LOX and kerosene takes place.42

To identify and quantify the importance of injector design
parameters, a parametric study was conducted to explore the

effects of recess length, post thickness, and annulus width on
the mixing and combustion characteristics. Four cases were
Fig. 6 Snapshots of density, vorticity magnitude, and kerosene

mass fraction fields (non-reacting flow).
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performed with the same operating conditions. Cases 2–4 dif-
fer in only one geometric parameter from Case 1 (baseline).
The recess region is removed in Case 2; the post thickness is

increased to 1.3 mm in Case 3; and the annulus width is dou-
bled to 1.0 mm in Case 4. Fig. 7 shows the effects of these
parameters on the distributions of the kerosene mass fraction.

The presence of a recess region (Cases 1, 3, and 4) is found to
advance the interaction of the propellants within the injector
and improve the mixing efficiency. Furthermore, because of

the lack of the restriction of the outer annulus surface in Case
2, kerosene spreads upward, leaving an insufficient amount of
fuel in the wake of the inner post for mixing with LOX. For
Fig. 7 Instantaneous distributions of kerosene mass fractio

Fig. 8 Snapshots of temperature fi
Case 3 with a thicker post, a larger spreading angle is gener-
ated for the LOX steam. The mixing is significantly enhanced
in Case 3, due to the wider area interaction and larger vortical

structures in the recess region. Similar phenomena are
observed for Case 4 with a wider annulus.

Simulations of reacting flows were performed to investigate

the effects of injector design parameters on flame dynamics.
Fig. 8 shows the instantaneous distributions of temperature
near the injector exit. For all cases, the flame is anchored in

the recess region and further stabilized by the center-
recirculating flow. In Cases 1 and 2, the flame is slightly lifted
off the LOX post, with a thin flamelet attached to the lower
n in injector near-field for all cases (non-reacting flows).

eld for all cases (reacting flows).
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post tip. In Case 3, the flame is anchored to the lower part of
the post surface. A thicker post leads to a broader region for
reactant mixing and combustion, but the resultant exposure

of the post surface to hot products increases the thermal load-
ing. This is not desirable from a practical design perspective.
The situation is even worse for Case 4 with a wider annulus;

the flame covers the entire surface of the LOX post, rendering
the hottest temperature profile among all cases.

With these results, our understanding of mixing character-

istics and flame stabilization is substantially improved, and
important design parameters that affect the injector perfor-
mance are identified.43 The question remains how to determine
an optimum group of design parameters to ensure the best per-

formance. The issue can be effectively addressed using emula-
tion techniques.

3.1.3. Gas-centered liquid-swirl coaxial injector

The third injector configuration presented here is a GCLSC,
which was used in the main combustion chamber of the RD-
170/180 engine for the Energia and Atlas V launch vehi-

cles,47,48 and the most powerful liquid rocket engine to date.
Fig. 9 shows a schematic of the longitudinal view.49 Gaseous
OXygen (GOX) is axially delivered into the center tube, and

liquid kerosene is introduced through the tangential inlet in
the coaxial outer annulus. Propellant mixing occurs in the
recess region of length of Lr. Three cases with different recess

lengths are discussed in this section. The GOX post is fully
recessed with Lr ¼ 16mm for Case 1; partially recessed with
Lr ¼ 10:5mm for Case 2; and not recessed for Case 3. The

operating pressure is 253 bar. The inlet temperatures of
GOX and kerosene are 687.7 K and 492.2 K, respectively. Ker-
osene undergoes a thermodynamic change of fluid state from
compressed liquid at injection to supercritical fluid in the flame

region, while GOX stays supercritical.44

Fig. 10 shows global and zoomed-in views of snapshots of
the water mass fraction ðyH2O

Þ field with different recess

lengths. For all cases, the flame is anchored at the GOX post
tip, the axial location of which increases with decreasing recess

length. For Case 1, the kerosene resembles a swirling jet in
Fig. 9 Schematic
crossflow. This leads to the formation of a shear layer at an
earlier stage and enhances the propellant mixing significantly.
As a result, Case 1 produces a broader flame area than Cases 2

and 3 at the exit of the recess region. The intensive flame zone
flushes the annulus surface, by means of turbulent motion and
thermal diffusion, thereby increasing the risk of thermal failure

of the injector. For Case 3 without recess, the flame ignites
downstream of the injector. The swirl-induced centrifugal
force drives the kerosene flowing along the taper surface, ren-

dering very limited mixing between GOX and kerosene. The
flame is restrained near the taper surface. The majority of
the central GOX stream moves downstream without interac-
tion with kerosene. As the recess length increases, fuel entrain-

ment improves and propellant mixing is enhanced. The
tradeoff is, however, a less fuel-rich mixture and a higher tem-
perature along the injector surface with increasing recess

length. The high-temperature profile along the surface endan-
gers the hardware and/or elevates the cooling requirement to
maintain proper operation of the injector device. On the other

hand, Case 2 achieves a good balance between efficient mixing
in the recess region and thermal protection of the annulus sur-
face. The optimized recess length can be determined by the

proposed emulation tool.

3.2. CPOD-based emulation for simplex swirl injector

As an example, the emulation framework is demonstrated

using the spatiotemporal evolution of the non-reacting flows
in a simplex swirl injector. Fig. 11 shows schematically the
injector and Table 1 presents the ranges of design parameters:

length (L), injector radius ðRnÞ, injection angle ðhÞ, injection
slot width ðdÞ, and axial location of the slot ðDLÞ. LOX is
injected tangentially into the injector at 120 K with a mass flow

rate of 0.15 kg/s. The injector is initially filled with gaseous
oxygen at 300 K. The operating pressure is 100 bar. The 6P
rule50 (within (5–10)P rule of thumb with P being the number

of design parameters) is applied for DOE, yielding a total of 30
design points. MaxPro is then implemented to obtain the 30
design points in the parameter space.20 All design points are
of GCLSC.49



Fig. 11 Schematic of swirl injector.

Table 1 Design ranges for swirl injector parameters.

Parameter L (mm) Rn (mm) h (�) d (mm) DL (mm)

Value 20–100 2.0–5.0 45–75 0.5–2.0 1.0–4.0

Fig. 12 Sensitivity analysis of liquid-film spreading angle.

Fig. 10 Global and zoomed-in views of instantaneous distributions of H2O mass fraction (reacting flows).
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treated as training points for high-fidelity simulations with the

same operating conditions. The collected simulation data is
analyzed and used to build the surrogate model.

3.2.1. Sensitivity analysis

Liquid-film thickness and spreading angle are two vital injector
performance metrics. An inviscid, incompressible-flow theory
estimates these responses as a function solely of the geometric

constant.46 To quantify the importance of each injector param-
eter on the liquid-film thickness and spreading angle, a sensi-
tivity analysis using a Monte Carlo approximation of Sobol’

indices was conducted.30 Fig. 12 shows the results of this anal-
ysis. The primary contributing parameter was circled with
solid lines. The slot width ðdÞ is found to be the strongest fac-

tor for the spreading angle. Assuming a fixed mass flow rate,
the inlet velocity is inversely proportional to the slot width,
and smaller slot widths would have larger liquid-film momen-
tum. Intuitively, the injection angle also directly affects the
momentum direction. As the angle increases, increased azi-
muthal momentum widens the spreading angle at the injector
exit. This is not reflected in the present analysis.

3.2.2. Decision tree

Analysis of simulated design points shows a distinction
between two underlying physical phenomena. One is the
expected swirling film that spreads radially upon exiting the

injector. The other is a jet-like behavior of the liquid film where
the radial spreading is minimal. A classification tree can be
trained using the Gini impurity index (see Ref.38 for details).

The simulated flowfield of each sampled design point is exam-
ined and classified as either jet-like or swirling flow. Next, a
search is conducted over all the design parameters and possible

split-points, finding the parameter constraints which minimize
misclassification. A branch is then made in the classification
tree corresponding to the parameter constraint, and the same

branching procedure is repeated for each of the resulting child
nodes. This decision tree learning technique not only provides
a means for partitioning the training dataset for the model into
jet-like and swirling flows, it also reveals physical insights into
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the important design parameter constraints causing the jet-
swirl dichotomy.

Fig. 13 shows the decision tree splitting process,20 indicat-

ing how the algorithm decides how an injector parameter is
associated with either jet-like or swirling flow. The initial
decision between the two behaviors is achieved by assessing

the extent to which the liquid film spreads radially from the
injector exit. The numeric outputs are binary flags for the
two subgroup classifications. For example, the first numeric

output, h< 60.0�, divides the dataset into 11 jet-like and 19
swirl cases. The decision tree then further categorizes the data
according to the injector inlet and radius. The decision tree
quantifies these effects and predicts a jet-like injector with

h < 60.0� and dP 1.40 mm. Following the previous two
criteria, if the tangential inlet angle is large enough, that is,
h > 49.2�, the injector retains swirling behavior. Although this

model cannot be directly used to facilitate design decisions, its
usefulness lies in the fact that it can manage the quality of
Fig. 13 Decision tree splitting process with numeric classifiers.20

Fig. 14 Five-dimensional contour plot for candidate injector config
training data by only using the relevant design points for a des-
ignated classification.

3.2.3. Inverse problem optimization

The surrogate model can also be used to find the design geom-
etry for a specified performance measurement, such as a speci-
fic liquid film thickness and spreading angle. With the trained

regression model, the corresponding response can be predicted
for a set of given parameters. On the other hand, for a specific
response, an inference can be made about the new set of

parameters. The relationship is determined from a calibration
dataset, and the new parameter set can be solved through the
regression model. Fig. 14 shows a five-dimensional contour

plot that illustrates a set of the candidate injector configura-
tions (parameters normalized) for a desired liquid film thick-
ness of 0.63 mm and spreading angle of 41�. The chosen

initial points for the solver lead to convergence to a candidate
injector configuration that would produce the desired
responses. This provides an array of design geometries that
can be further narrowed following more performance measure-

ments or analysis of flow dynamics.
With specified constraints, an optimal configuration can be

acquired. For example, if a liquid film thickness of 0.60 mm

and spreading angle of 42.5� was desired for a first-stage
engine injector longer than 50 mm and tangential inlet less
than 1.50 mm, the best candidate injector would have

the dimensions L = 80.21 mm, Rn = 2.52 mm, h= 62.43�,
d= 1.16 mm, and DL = 1.88 mm.

3.2.4. Spatiotemporal emulation

To ensure that the proposed emulator provides accurate flow
predictions, we perform a validation simulation at a new
urations with a desired liquid film thickness and spreading angle.



Fig. 15 Emulated and simulated instantaneous temperature

fields (t= 21.75 ms).

Fig. 16 PSD of pressure fluctuations from simulation and

emulation data at different locations.

Fig. 17 One-sided width of 80% confidence interval: Temper-

ature and pressure predictions.20
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geometric setting: L = 22 mm, Rn = 3.215 mm, DL = 3.417
mm, h= 58.2�, and d= 0.576 mm, a 10% deviation on the
existing injector used in RD-0110 engine. Fig. 15 shows the

qualitative comparison of the emulated and simulated temper-
ature fields. From visual inspection, the predicted flow closely
emulates the simulated flowfield. Downstream recirculation

zones are correctly identified in the prediction. These compar-
isons demonstrate the effectiveness of the emulator in captur-
ing key flow physics and the importance of incorporating

known flow properties of the fluid as assumptions in the statis-
tical model.

The Root-Mean-Square-Relative Error (RMSRE) is calcu-
lated to measure the accuracy of the emulations. It quantita-

tively compares the temperature distribution between
simulation and emulation for two cases (swirl and jet-like),
illustrating minor discrepancies near the injector wall. The

swirl case has an overall error of 5.18%, compared to 6.62%
upstream and 3.10% downstream of the injector exit. For
the jet-like case, the error varies from 8.30% to 9.03% if the

considered area changes from upstream to downstream of
the injector exit.

Injector dynamics involve downstream pressure fluctua-

tions causing pressure drop oscillations across the liquid film.
These changes in turn trigger mass flow rate variations across
the tangential inlets,40 over a wide range of time scales. A
Power Spectral Density (PSD) analysis can quantify these

oscillations and capture the periodicity of flow features. Pres-
sure PSDs are calculated for both the simulation and emula-
tion results. Fig. 16 shows the PSD of two probes along the

axial direction; the dominant frequency content is observed
to be well quantified. For system dynamics, retaining spa-
tiotemporal information is critical to properly identifying

injector tuning characteristics. Combustion instabilities have
plagued rocket engine development, and a spatiotemporal
emulator would be vital to surveying how flow and combus-
tion dynamics vary in the design space.

The emulator model also allows for quantification of pre-
dictive uncertainty, which can be used as a goodness-of-fit test.
Moreover, these uncertainties can be linked to dynamic flow

physics. As an example, the spatial uncertainty quantification
is shown in Fig. 17, showing the one-sided width of the 80%
pointwise confidence interval for pressure and temperature20

(a derivation of this interval is found in Ref.31). It is seen that
the emulator is most certain in predicting the flows near the
inlet and centerline of the injector. The uncertain areas, in

the time-mean temperature distribution, correspond to the
most dynamic sections of the liquid transition region. The
downstream uncertainty is caused by the recirculation induced

through vortex breakdown.



Fig. 19 Comparison of density field between LES-based simu-

lation and KSPOD-based emulation.51
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3.2.5. Improvement on CPOD-based emulation

The CPOD-based emulation was examined in spatiotempo-

rally evolving flows of swirl injectors with five-parameter
design space. The emulator was built using the training data-
base of 30 LES-based simulations, each of which requires six

days of computation time on a parallelized system of 200 Intel
Xeon E5-2603 1.80 GHz processing cores. While the process to
accumulate this dataset is undeniably time-consuming, the

proposed surrogate model can provide a good prediction of
output performance in slightly over an hour of computation
time. Fig. 18 presents the computational timeline for the whole
design framework. An LES-based simulation requires nearly

30000 CPU hours to collect enough data for physics extraction
and POD analysis, while the parallelized predictions from the
emulator only need around 30 CPU hours, significantly reduc-

ing the turn-around time by three orders of magnitude.
One may wonder that the very fine structures are not cap-

tured exactly on the surface of the liquid film, as manifested

in Fig. 15. This is attributed to the assumption of identical
POD modes for all design points in the common grid system,
provided the design space is very large (Fig. 11). The POD

analysis of the whole 30-case database introduces a type of
averaging effect on the flow dynamics, and thus smooths the
prediction by the surrogate model.

To faithfully capture the spatiotemporal flow dynamics, an

improved surrogate model, called Kernel-Smoothed POD
(KSPOD),51 can be adapted to the current high-fidelity frame-
work. The key idea of the KSPOD is to retain the separate

POD modes of the flowfield for all training design points,
and then apply Kriging to predict the weight ðŵiÞ of each
POD mode at a new design setting. These weights are subse-

quently used to predict the new POD modes through a
weighted average of the extracted modes and coefficients at
the new design settings, as follows:

/̂kðx; cnewÞ ¼
Xn
i¼1

ŵiðcnewÞ/k x; cið Þ
�Xn

i¼1

ŵiðcnewÞ ð10Þ

For each time step and each mode, the kriging procedure is
performed on both time-varying coefficients and weights of

POD modes with given input parameters.
To demonstrate the function of KSPOD, a new database is

established using simplex swirl injectors. From sensitivity anal-

ysis, injector length and radius play minor effects on the out-
put responses. Therefore, only three parameters, injection
angle, slot width, and axial distance of slot, are included in
the design space. A total of 30 design points is determined with

the 10P rule (P = 3) and distributed using SLHD. The overall
design matrix contains five slices, and each slice includes six
Fig. 18 Computational timeline for design framework.20
design points. Following the flowchart in Fig. 3, high-fidelity

simulations are performed at all design points to create the
database, which can be clustered into four subgroups through
careful learning of the physical responses.51 Fig. 19 shows a

comparison of density field between LES-based simulation
and KSPOD-based emulation at a test point in one of the sub-
groups. The evolution of the liquid film and its spreading
downstream of the injector exit agree well between the simula-

tion and emulation. The small-scale structures are much better
captured here than using the CPOD methodology.

The proposed methodology can be incorporated into a soft-

ware for similar spatiotemporal problems. With respect to R
and Python, the two most popular open source programming
languages used by data analysts and data scientists, the

methodology can be implemented in a straightforward man-
ner. Existing packages, such as pyDOE and SLHD, can con-
struct space-filling experimental designs and assess their
quality. Established tests of the modred and pyKriging pack-

ages enable CPOD-based emulator model building, which is
also reflected within R, mirrored by the bigpca and GPfit pack-
ages. These open source packages provide the key components

such that the methodology can be incorporated into a software
that can be practiced by others.

4. Conclusions

The present work proposes a high-fidelity methodology for
design and optimization using LES and emulations. The

framework gathers a group of methods, including DOE,
LES, machine learning, POD-based emulation, inverse prob-
lem optimization, and uncertainty quantification. Given a set

of design parameters, DOE determines the number of design
points that are required to perform LES-based simulations.
These simulations can capture spatiotemporal flow structures
and flame dynamics and identify important design attributes,

but they are time-consuming and become impractical for sur-
veying the entire design space. The POD-based Kriging surro-
gate model (emulation), trained by the accumulated LES

dataset, can efficiently explore the design space while maintain-
ing high-fidelity spatiotemporally. The developed framework
can significantly improve the knowledge base for the initial

design stages in a very reliable and time-efficient manner.
As a specific example, the framework is implemented to

study the liquid swirl injectors broadly used in aerospace

propulsion and power-generation systems. Detailed flow and
dynamics for three different types of injectors are examined
using high-fidelity LES. Important injector design parameters
are identified in terms of their influence on the effectiveness
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of mixing, flame stabilization, and thermal protection. Emula-
tion is then used to survey the entire design space. To accom-
modate different injector geometries, a common grid system is

constructed for CPOD analysis. The accuracy of the emulation
is validated, and the uncertainty of prediction is quantified.
The turn-around time of CPOD-based emulations is three

orders of magnitude lower than that of LES-based simula-
tions. Although the CPOD-based emulator predicts the mean
flow features and certain flow dynamics at new design points

quite well, some small structures are difficult to capture
because of the nature of the CPOD technique. An improved
surrogate model, the KSPOD-based emulator is developed to
more faithfully capture the spatiotemporal flow dynamics by

leveraging Kriging-based weighted functions to the POD
modes at new design points.

Acknowledgement

This work was sponsored by the William RT Oakes Endow-

ment of the Georgia Institute of Technology.
References

1. Mavris D, DeLaurentis D, Bandte O, Hale M. A stochastic

approach to multi-disciplinary aircraft analysis and design.

Reston: AIAA; 1998. Report No.: AIAA-1998-0912.

2. Oefelein JC, Yang V. Comprehensive review of liquid-propellant

combustion instabilities in F-1 engines. J Propul Power 1993;9

(5):657–77.
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